Design and Experimental Evaluation of a Skin-Stretch Haptic Device for Improved Control of Brain-Computer Interfaces

Sean Sketch¹, Darrel Deo¹, Jayant Menon², and Allison Okamura¹

- ¹ Department of Mechanical Engineering Stanford University
- ² Department of Neurosurgery Stanford School of Medicine

IEEE International Conference on Robotics and Automation May 27, 2015

Background

Haptics for BCI?

VIBROTACTILE

devices are...

- small, portable
- low-cost
- low-power and safe

feedback is...

- unnatural
- hard to interpret
- · no better than visual

KINESTHETIC

feedback is...

- natural
- intuitive
- known to improve BCI

devices are...

- unwieldy
- expensive
- · potentially unstable

ROS

SNO

Background

SKIN STRETCH

- natural trajectories
- small actuators
- highly portable

(Gleeson, Stewart, & Provancher, 2011)

Design

Design

Control

POSITION BASED

VELOCITY BASED

Evaluation

2-4 sessions of **4** blocks of **20** trials each, with blocks alternating between control with and without haptic feedback

Results

Intuitiveness

Skin stretch is likely interpreted as a substitute for proprioception.

Results

Performance

Appropriately applied skin-stretch feedback has the potential to improve BCI control.

Thanks

Device Design

Zhan Fan Quek & Andrew Stanley

Software Programming

Dr. Tricia Gibo & Sam Schorr

Experimental Design

Dr. Jaimie Henderson

Data Analysis

Dr. Ilana Nisky

Seminal Work on Skin Stretch

Dr. William Provancher

EMOTIV

Stanford University

National Science Foundation